T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对当前传统网络模型对中药饮片检测精度低,检测不准确的问题,提出一种基于YOLOv8n优化改进的MSDA-YOLOv8中药饮片检测模型。首先,在Backbone上使用Scconv代替部分c2f模块,使用DycAconv代替部分conv。其次,添加DilateBlock模块,强化特征信息,提高了检测模型的特征融合能力。在Neck上,设计全新的c2fmsda模块代替c2f,并引入Inception板块,扩大特征感受视野。使用BiFPN思想,高效双向跨尺度连接和加权特征融合,提高网络性能;最后将原有的损失函数替换为MPDIoU边界损失函数,模型的边界框回归性能有了提高。实验结果表明,改进后的YOLOv8模型在原模型的基础上提高识别精确度0.7%、平均精度2.9%,参数量降低1.9%。综合说明,该模型提高模型识别精度同时降低参数量,优于原算法以及对比算法,满足边缘计算要求,具有实际应用价值。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn