T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对大数据环境下DCNN(deep convolutional neural network)算法中存在网络冗余参数过多、参数寻优能力不佳和并行效率低的问题,提出了大数据环境下基于特征图和并行计算熵的深度卷积神经网络算法MR-FPDCNN(deep convolutional neural network algorithm based on feature graph and parallel computing entropy using MapReduce)。该算法设计了基于泰勒损失的特征图剪枝策略FMPTL(feature map pruning based on Taylor loss),预训练网络,获得压缩后的DCNN,有效减少了冗余参数,降低了DCNN训练的计算代价。提出了基于信息共享搜索策略ISS(information sharing strategy)的萤火虫优化算法IFAS(improved firefly algorithm based on ISS),根据“IFAS”算法初始化DCNN参数,实现DCNN的并行化训练,提高网络的寻优能力。在Reduce阶段提出了基于并行计算熵的动态负载均衡策略dlbpce(dynamic load balancing strategy based on parallel computing entropy),获取全局训练结果,实现了数据的快速均匀分组,从而提高了集群的并行效率。实验结果表明,该算法不仅降低了DCNN在大数据环境下训练的计算代价,而且提高了并行系统的并行化性能。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn