T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of positionbased impedance control(PBIC) for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is *** experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test.
摘要:As the conventional reciprocating gait orthosis(RGO)has been deemed incapable of facilitating the patients’passive movement with significant gait discrepancies and distortion,in addition to characteristics such as poor stability,and negligible knee joint rehabilitation,a power assisted reciprocating gait orthosis(PARGO)was *** devices were added to the hip and knee joints of the *** efficient implementation of structural components,the number of the required motors was reduced,therefore decreasing the weight of the *** PARGO knee joint’s structural principle was analyzed to characterize the effect of the PARGO’s single-axis knee joint design on wear comfort,thereby providing a basis for the wear of the *** analyzing the sagittal movement patterns of the hip and knee joints during normal human gait,kinematic analysis was carried out to obtain the input patterns of the PARGO hip and knee joint drive motors,enabling the patients to more accurately reproduce the normal gaits of hip and knee joints during the rehabilitation training with the aid of the PARGO,and the control process of the PARGO was ***,a prototype of the PARGO was developed,and experimentation was carried out to demonstrate the feasibility of the improved orthosis.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn