T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:Engineering designs for mountainous highways emphasize compliance checking to ensure safety. However, relying solely on compliance checking may lead designers to minimize costs at the expense of high risk indicators, since the overall risk level of the highway design is unknown to the designers. This paper describes a method for the simultaneous consideration of traffic safety risks and the associated cost burden related to the appropriate planning and design of a mountainous highway. The method can be carried out in four steps: First, the highway design is represented by a new parametric framework to extract the key design variables that affect not only the life-cycle cost but also the operational safety. Second, the relationship between the life-cycle cost and the operational safety risk factors is established in the cost-estimation functions. Third, a fault tree analysis (FTA) is introduced to identify the traffic risk factors from the design variables. The safety performance of the design solutions is also assessed by the generalized linear-regression model. Fourth, a theory of acceptable risk analysis is introduced to the traffic safety assessment, and a computing algorithm is proposed to solve for a cost-efficient optimal solution within the range of acceptable risk, in order to help decision-makers. This approach was applied and examined in the sichuan–tibet Highway engineering project, which is located in a complex area with a large elevation gradient and a wide range of mountains. The experimental results show that the proposed approach significantly improved both the safety and cost performance of the project in the study area.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn