T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:A broadband reflective polarization converter is proposed. The unit cell of polarization converter is composed of a single-split resonant ring, a double-split resonant ring, a dielectric substrate and a metallic ground. The simulated results show that the polarization converter can convert x-polarized waves into y-polarized waves and obtain a broadband polarization conversion from 0.501 0 THz to 1.390 0 THz with the polarization conversion ratio(PCR) beyond 80% at normal incidence. Moreover, the surface current distributions are investigated to explain the polarization conversion mechanism. Finally, a good agreement is achieved between simulated and measured results. The polarization converter can be applied in terahertz imaging, communication and stealthy technology.
摘要:This paper presents recent naval applications of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach implemented for the first time with high order fully unstructured schemes and an efficient level-set method to capture free surface flows around realistic hull geometries. Numerical simulations in waves and/or viscous flows still lead generally to very large CPU times because of grid requirements to ensure a good propagation of incident waves in the meshed part of the fluid domain that makes unreachable any hull design optimization process in an industrial context. Furthermore, even if the SWENSE method clearly shows promising results in an academic context in both regular and irregular waves, the most recent publications still highlight several issues that remain unresolved up to now, e.g. poor scalability, diffusive wake pattern, non-versatile structured mesh approaches and only very few validation test cases are carried out on Wigley or DTMB 5415 hulls. In order to overcome those numerical difficulties and get an in-depth validation of the method on several cases in realistic wave conditions, a two and a half years' research project has been achieved involving several steps, starting by a set of dedicated model test experiments later used as reference for the validation of the method. The CFD commercial code ANANASTM used and developed in this research program is presented and validated in detail. The use of high order schemes on unstructured grids in combination with these SWENSE method and level-set approach offer to the maritime industry an innovative and state of the art method to achieve unequaled accuracy, low computation time and some unique advantages such as, amongst others, the end of the numerical wave propagation problems. The results of the validation were pleasing and can be considered as acceptable in general, with some challenges remaining to the solyed. Results obtained indicate that an optimization processes in waves in realistic
摘要:In this paper, an attempt has been made to produce a recipient system of wireless charge for a simple hearing aid so that electrical signal would be generated through detecting and receiving radio frequency waves (RF). The purpose of this design is to receive wireless charge for hearing aids and basically for any electronic device which is not required to a high energy for being setup. In this study, it has been demonstrated that as the amount of radio receiving energy increases, distance of receiver from antenna should be decreased;otherwise, either maximum amount of the receiving energy, or signal power density of the transmitter should be increased. Since it is impossible to be performed, it is decided to set up an energy receiving system constructed by rectenna and charge Circuit and to adjust their parameters to provide energy requirements for a device with low-power consumption. In this paper, different components of an energy receiving system from radio frequency band have been mentioned and a diagram block has been suggested. Subsequently, input impedance of designed antenna has been adjusted by provided relations. This impedance should be adjusted with the total impedance of regarded hearing aid Circuit by which the highest amount of received signal power is transferred to the battery of hearing aids. Received signal is converted to a dc voltage by rectifier diode. Finally, by applying a voltage regulator which has been designed using a common-collector amplifier not only the output voltage is kept constant, but the power is also strengthened. The battery of the hearing aids will be charged using the obtained power and voltage.
摘要:The fundamental measurement of space gravitational wave detection is to monitor the relative motion between pairs of freely falling test masses using heterodyne laser interferometry to a precision of 10 pm. The masses under test are millions of kilometers apart. The inter-spacecraft laser interferometry telescope deliver laser efficiently from one spacecraft to another. It is an important component of the gravitational wave detection observatory. It needs to meet the requirements of large compression ratio, high image quality and extraordinary stray light suppression ability. Based on the primary aberration theory, the method of the large compression ratio off-axis four-mirror optical system design is explored. After optimization, the system has an entrance pupil of 200 mm, compression ratio of 40 times, scientific field of view (FOV) of ±8 μrad. To facilitate suppressing the stray light and delivering the laser beam to the back-end scientific interferometers, the intermediate images and the real exit pupils are spatially available. Over the full FOV, the maximum root mean square (RMS) wavefront error is less than 0.007λ, PV value is less than 0.03λ (λ = 1064 nm). The image quality is approached to the diffraction-limit. The TTL noise caused by the wavefront error of the telescope is analyzed. The TTL noise in the image space of 300 μrad range is less than 1 × 10-10 m whose slope is lower than 0.6 μm/rad, which is under the noise budget of the laser interferometer space antenna (LISA), satisfying the requirements of space gravitational wave detection.
摘要:将适用于近岸较大区域波浪传播变形的三种模型,即基于抛物型缓坡方程的不规则波模型、引入浅水波浪谱TMA谱的SWAN(simulating waves nearshore)模型以及采用默认JONSWAP谱的SWAN模型应用于特拉华大学(University of Delaware)圆形浅滩实验进行比较。结果显示,抛物型缓坡方程和SWAN的模拟结果与实验所测数据符合都比较好;SWAN在非线性作用较强的浅滩中心及靠后部效果更佳,而抛物型缓坡方程由于没有考虑非线性作用,模拟得到的最大波高较实测值偏高,且波高变化较为剧烈。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn