T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:渔用声呐利用声波来探测水下鱼群分布和活动,通常采用全向发射或指向性扫描发射的方式实现对鱼群位置的初步探测。针对传统全向发射方式信号指向性较差,指向性扫描发射方式波束覆盖不均匀的问题,根据渔用声呐在实际捕捞场景中的需求,提出了一种基于旋转扇区扫描的改进方法。通过水声学算法仿真分析方法,分别仿真分析了扇区数量、边界角度等影响扫描发射性能的因素并进行了水池测试。仿真结果表明,采用4扇区旋转扇区的指向性扫描发射方式,在实现水平360°全向扫描的同时,提高了信号的指向性和探测区域的均匀性:主瓣强度相较全向发射提高8 dB,单个扇区中的发射波束最大强度差小于1.5 dB,波束宽度差在2°以内。综合现有测试条件,通过实验室水池测试了相邻两扇区发射扫描指向性。测试结果表明,所提出的设计方案在两扇区前方64°范围,指向性比全向发射平均高约8 dB,在提高探测效率和精度方面可行且有效,有助于在更广泛的范围内获得准确的鱼群信息。
摘要:针对河蟹蟹脚人工壳肉分离劳动强度大、效率低下且蟹肉易污染等问题,设计了一种辊筒挤压式蟹脚壳肉分离装置。该装置通过倾斜的输送滑道将蟹脚输送到一对直径相同、转动方向相反,转速相同的圆柱辊筒之间,利用其挤压作用完成蟹脚的壳肉分离。为确定蟹脚壳肉分离装置的最佳工作参数,以分离效率、得肉率及蟹肉品质为性能指标,以送料角度、辊筒间隙和辊筒转速为影响因素对样机开展了正交试验。结果表明:影响壳肉分离效率的极显著因素为辊筒转速,送料角度和辊筒间隙影响不显著;影响得肉率的极显著因素为辊筒间隙,显著因素为送料角度,辊筒转速影响不显著;影响蟹肉品质的极显著因素为辊筒间隙,送料角度和辊筒转速影响不显著。试验结果表明:最佳工作参数为:送料角度40?,辊筒转速35 r/min、辊筒间隙1.2 mm,在此最优组合参数下,分离率23.1 kg/h,得肉率98.5%,蟹肉品质8.9分,该研究可为后续的设计优化与性能提高提供参考。
摘要:干燥是海带加工过程中的工序之一,为进一步解决海带干燥过程中劳动强度大、能耗高等问题,该研究设计了自然晾晒与热泵烘干级联的干燥模式并研制了海带全程自动搬运、协调工作的码垛自动控制系统,其由晾晒棚、热泵房、码垛装置、桥接装置与控制室组成。采用USS协议与G120变频器通讯,采集信号通过485通讯口送到可编程逻辑控制器PLC的寄存器,PLC对行走电机进行加减速判断;同时利用Profibus协议实现PLC与Sick条码定位传感器通讯,实现晾晒杆准确定位;然后编程控制气动抓手,实现海带晾晒杆的自动抓放等动作;利用限位开关作为数据传递的触发信号,晾晒棚与热泵房导轨自动对接,实现海带自然晾晒与热泵烘干结合。试验结果表明,该控制系统总运行时间为5.7 h,晾晒杆定位误差±1 cm,高速运行速度20 m/min,晴天自然晾晒可减少海带含水率至60%,烘干后海带含水率为15.2%左右,泥沙、杂质率为0%,为一级品。系统运行稳定,节约人工,保证海带干燥的品质。该研究有助于为藻类加工产业提供高品质、低能耗、绿色环保新模式与样板。
摘要:为了解决池塘养殖设施化程度低、净化能力不足和排污效果差等问题,设计了分隔式循环水池塘养殖系统。该系统由20%水面的吃食性鱼类养殖区和80%水面的滤杂食性鱼类养殖区构成,配置过水堰、螺旋桨式和水车式推流装置、集污和吸污装置等养殖系统设施和装备。性能测试结果表明:螺旋桨式推流装置提水动力效率为340 m^3/(k W·h),流量为204 m^3/h,空载噪音为60 d B;水车式推流装置提水动力效率为360 m^3/(k W·h),流量为180 m^3/h,空载噪音为67 d B;过水堰过水的总流量约为331 m^3/h,利用水循环装备实现水体流动可实现水体日交换量7 900 m^3,达到养殖池塘水体的50%左右。利用推流装置搅动水体,可实现水体大范围的对流,交替暴晒水体,增加水体中的溶解氧,试验池塘中下层溶解氧水平比对照塘高出59.5%,试验池塘叶绿素a浓度比对照塘低,说明一定程度上限制了浮游植物过渡繁殖。该养殖系统可为池塘健康养殖系统模式构建提供参考。
摘要:为提高池塘养殖的机械增氧效率,应用Solidworks软件设计了移动式太阳能能增氧机,该设备由太阳能动力组件、水面行走机构、增氧装置和运动控制系统等组成。移动式太阳能增氧机可在水面自主行走,产生波浪和实现上下水层交换。性能测试表明,移动式太阳能增氧机的光照启动强度为17 000 lx,空载噪声为75.3 d B,水面行走机构的行走速度在0.027~0.041 m/s之间波动,无线遥控距离为44.2 m,在增氧装置位置的最大浪高为0.44 m。随着光照强度的增强,增氧装置增氧效率和扰动水体能力增强,最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(k W·h);最大扰动水体1 254.4 m3/h,扰水动力效率2 613.3 m3/(k W·h)。移动式太阳能增氧机利用太阳能作为能源,在池塘水体中运行面积大、运行时间长,强化了池塘自身的自净能力,具有生态调控的功能,有利于池塘物质循环和水质改善。
摘要:为把流化床生物滤器应用于循环水养殖系统,探讨其较佳的设计与运行参数,研制了一种涡旋式流化床生物滤器,并对其水力特性进行了试验研究。试验装置使用石英砂作为填料,设计了0.18~0.25、>0.25~0.425和>0.425~0.6mm3组不同粒径范围的石英砂和40、50、60、70、80和90cm6组不同初始砂床高度的双因素试验,探讨了石英砂粒径和初始床层高度对砂床流化性能的影响。结果表明:3组不同粒径范围石英砂的临界流化速度分别为(0.061±0.0088)、(0.25±0.011)、(0.48±0.014)cm/s。砂床要保持良好的流化状态,初始砂床高度与床层直径的比值(高径比)需分别大于1.43,1.78和2.14,且高径比与石英砂粒径大小成正比;在相同的膨胀率下,当初始砂床高度增加时,表面流速基本保持不变。床层压降测量显示,3组不同粒径范围石英砂单位床高的压降值分别为(7530.66±215.98)、(6925.66±364.58)和(6790.08±277.95)Pa/m,使用0.18~0.25mm石英砂测得的压降试验值与理论值较为接近,误差在2%~3%。基于Ergun方程,采用回归拟合方法得出涡旋式流化砂床临界流化速度的数学模型,可为流化床的设计和应用提供技术依据。
摘要:为改善池塘养殖环境,设计了一种移动式太阳能增氧机,由光伏供电装置和水面行走装置搭载涌浪机而成,能在水面沿钢丝绳移动并利用涌浪机的波浪增氧和水层交换作用,大范围扰动水体并为池塘增氧。该研究的目的是通过机械增氧效率检测、提水能力测定和池塘增氧能力测定3个试验,评估太阳能增氧机的机械增氧性能、水层交换性能和实际应用效果,以期全面了解移动增氧机增氧能力。结果表明,该移动式太阳能增氧机最大机械增氧能力为1.24 kg/h,动力效率2.59 kg/(k W·h);最大提水能力1 254.4 m3/h,提水动力效率2 613.3 m3/(k W·h);并在晴好天气白天(09:00—19:00),在对照组底层溶氧为3.1~3.8 mg/L时,大幅度提升池塘底层溶氧水平,最高时达7.8 mg/L,维持池塘上下溶氧均匀度72%~84%,极大改善了底层溶氧环境。数据表明移动式太阳能增氧机具有良好的机械增氧和水层交换性能,因而能有效改善池塘底层溶氧环境,提高上下水体溶氧均匀度。该研究结果可为太阳能增氧机的进一步推广应用提供数据支撑。
摘要:为进一步研究循环水养殖系统在高密度养殖生产过程中的水质变化情况、鱼类生长情况及应用推广价值,该文构建了一套超高密度全封闭循环水养殖系统,设计3条水处理环路,集成了鱼池双排水、竖流沉淀、转鼓式微滤机、移动床生物过滤、多腔喷淋式纯氧混合装置、二氧化碳脱气等高效水处理技术和装备。提出一种基于投饲量的循环水养殖系统设计计算方法,重点考虑氨氮、溶解氧和总悬浮颗粒物3个水质指标。使用该系统养殖吉富罗非鱼6个月,试验研究结果显示:鱼类生长情况良好,最高养殖密度104.2kg/m3。饵料系数1.4,成活率92.2%。水质检测结果显示:氨氮浓度维持在平均(1.09±0.55)mg/L;溶解氧维持在4~9mg/L范围内;pH值6.45~7.41。经济性分析研究结果表明,系统养殖运行成本约为25元/kg,略高于市场价格。但是,从环境成本考虑,系统的节水效果显著,日耗水仅为0.3~0.5m3。通过适当的精简并挑选合适的养殖品种,完全可以实现规模化的生产。
摘要:介绍一种新设计的液压绞车试验台.此试验台适用于测试不同厂家所生产的各类型号液压绞车的必要性能及寿命,并且运用液压能量回收利用新技术,避免由于长时间的测试,而造成的能量浪费,实现能量的回收再利用.简述了其正向卷取工况和反向收绳工况的工作原理,并建立了系统的数学模型,同时分析了卷绳拉力、溢流阀6的调定压力以及主卷筒转速对系统功率节约率的影响情况.最后使用AMESim软件进行建模,分析了其功率节约率.
摘要:为了补偿拖网渔船作业过程中绞车纲绳张力波动或渔船转向造成的负载不对称性,保持网具良好的开口形状,基于电液控制技术设计了拖网张力自动控制系统。对拖网曳纲张力采集方法进行了研究,采用油压力传感器间接测量拖网左右曳纲张力数据作为输入信号,传输到控制器进行逻辑运算,控制先导溢流阀调整马达溢流压力,改变绞车输出扭矩,从而驱动拖网绞车收、放来控制左右曳纲张力,达到系统动态平衡。并基于实验室虚拟仪器工程平台(laboratory virtual instrument engineering workbench,Lab VIEW)对系统软件进行了设计,实现绞车张力控制系统的参数设置与控制管理。为了验证系统的张力控制特性和实用性,对系统进行了海上应用试验,在张力自动控制模式下,拖网绞车根据渔船航速和水流自动调节收放网速度,减少作业过程中曳纲张力波动。拖曳过程中拖网曳纲长度范围为350~490 m,绞车曳纲张力范围为118~148 k N,对应系统压力为2.3~2.7 MPa,渔船平均拖速为5.6节。试验结果表明,左右曳纲张力差在合理范围内,系统能很好调节曳纲张力大小,为渔船安全生产提供了保障;启用张力控制系统后网口面积比未使用张力控制系统前增大了9.5%,有效调整了网口扩张,提高了捕捞效率。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn