T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对循环生成对抗网络CycleGAN(Cycle Generative Adversarial Networks)在光学图像迁移生成水下小目标合成孔径声纳图像过程中存在质量差和速度慢的问题,本文提出一种新的特征提取单元SDK(Selective Dilated Kernel),并利用SDK设计了一个新的生成器网络SDKNet.与此同时,提出了一种新的循环一致损失函数MS-CCLF(Multiscale Cyclic Consistent Loss Function),MS-CCLF增加了图像多尺度结构相似性约束.在自建的图像迁移数据集OPT-SAS上,本文SM-CycleGAN(Selective and Multiscale Cycle Generative Adversarial Networks)比原始CycleGAN的图像迁移质量提升4.64%,生成器网络参数降低4.13MB,运算时间减少0.143s.实验结果表明,SM-CycleGAN更适合水下小目标光学图像到合成孔径声纳图像的迁移任务.
摘要:针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。
摘要:针对循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK(Bottleneck Selective Dilated Kernel),并利用BSDK设计了一个新的生成器网络BSDKNet。与此同时,提出一种多尺度损失函数MLF(Multi-scale Loss Function)。在自建的浑浊水体图像增强数据集TC(Turbid and Clear)上,该文BM-CycleGAN比原始CycleGAN的精度提升3.27%,生成器网络参数降低4.15MB,运算时间减少0.107s。实验结果表明BMCycleGAN适合浑浊水体图像增强任务。
摘要:针对轻量化目标模型SSD-MV2对水下光学图像感兴趣目标检测精度低的问题,该文提出一种通道可选择的轻量化特征提取模块(SEB)和一种卷积核可变形、通道可选择的特征提取模块(SDB)。与此同时,利用SEB模块和SDB模块分别重新设计了SSD-MV2的基础网络和附加特征提取网络,记作SSD-MV2SDB,并为其选择了合理的基础网络扩张系数和附加特征提取网络SDB模块数量。在水下图像感兴趣目标检测数据集UOI-DET上,SSD-MV2SDB比SSD-MV2检测精度提高3.04%。实验结果表明,SSD-MV2SDB适用于水下图像感兴趣目标检测任务。
摘要:针对圈养条件下瓶鼻海豚通讯信号(whistle)分类时混叠大量回声定位信号(click)导致分类正确率降低的问题,提出了一种基于机器学习的融合分类方法。分别提取whistle信号的时频分布特征训练随机森林分类器,梅尔时频图特征训练卷积神经网络分类器,在此基础上设计融合判决器对混叠whistle信号进行分类识别。对圈养海豚声信号采集实验数据的分类识别结果表明,融合分类方法具有更好的分类性能,对混叠whistle信号分类正确率大于94%,优于时频分布特征分类器和梅尔时频图特征分类器,能够提高混叠信号的分类能力。
摘要:针对水声信道长传播时延特点导致水声通信网吞吐量低的问题,提出了一种多节点协同并行传输的多址接入协议。该协议由接收端发起预约,在距离认知的基础上对预约节点划分协同传输小区,从而构建多用户节点的多输入多输出集中式网络架构;采用空时码对数据包编码,并合理规划数据包的发送时刻,使同一小区的多个用户节点发送的数据包在设定时间偏差范围内同时到达接收端,而不同小区的数据包以包链形式到达,实现多用户节点的无干扰、高效并行传输。仿真实验结果表明,与已有的其它两种协议相比,设计的协议通过空时复用的方法大幅缩短了平均端到端时延,显著提升了归一化网络吞吐量。
摘要:传统的特征提取算法往往依赖于算法设计者的先验知识,没有突出大数据的优势,所以在实际应用中分类正确率较差且对于不同应用场景的泛化能力也明显不足。使用深度学习算法进行舰船辐射噪声的特征提取,利用了大量无类标数据,使用堆栈稀疏自编码器算法训练特征提取神经网络,并使用Softmax分类器算法利用有类标数据对特征提取神经网络进行参数微调。应用SSDAE-Softmax算法以及主成分分析算法、线性判别分析算法以及局部线性嵌入算法三类机器学习算法对海试数据进行处理,SSDAE-Softmax算法能够从舰船辐射噪声中提取更加具有区分度的特征,能够提升舰船辐射噪声的分类识别正确率,试验结果表明在低信噪比以及少量训练样本的应用场景下分类效果均高于其他三类算法。
摘要:轻量化目标检测模型SSD-MV3(Single Shot Detection-MobileNet V3)因输入图像尺寸限制无法直接检测高分辨率大尺寸合成孔径声纳(Synthetic Aperture Sonar,SAS)图像中感兴趣小目标.为此,本文提出了一种新的目标检测方法HRSSD(High Resolution Single Shot Detection),该方法通过冗余切割确保SSD-MV3输入图像尺寸的规范以及感兴趣小目标的完整,并利用二次非极大值抑制保证检测结果的唯一.此外,提出了一种尺度、空间和通道注意力机制联合的特征提取模块,并利用该模块重新设计了SSD-MV3的基础网络和附加特征提取网络,记作SSD-MV3P(Single Shot Detection-MobileNet V3 Pro),使得SSD-MV3P能更有效的感知感兴趣小目标特征信息.实验结果表明,在感兴趣小目标检测数据集SST(Sonar Small Targets)上,SSD-MV3P的平均检测精度(mean Average Precision,mAP)比SSD-MV3提升4.39%.HRSSD实现了高分辨率大尺寸SAS图像感兴趣小目标的检测,并且保证了同一位置上检测结果的完整性和唯一性.
摘要:为了提高对掩埋目标的探测能力以及成像分辨率,本文提出了一种基于精确时延并行时域逐点算法的低频合成孔径掩埋目标探测系统,该系统包括3个部分:宽带信号发射系统、信号采集系统及信号处理系统。信号处理系统采用基于精确时延的并行时域逐点成像算法进行成像处理。相比于传统的时域合成孔径成像算法,基于精确时延的并行时域逐点成像算法,可以有效地解决掩埋目标成像中由于水中和沉积层中声速的剧烈变化导致的散焦问题,具有对此类目标更高的成像分辨率,并且其计算效率更高,具有实时性上的优势。基于该成像算法,设计并实现了一套实时低频合成孔径掩埋目标探测系统,通过多次湖上及海上实验对该系统进行测试,实验结果表明:该系统可以有效获取水下掩埋目标图像,并且聚焦效果良好。
摘要:2019年7月11日,我们将迎来李启虎先生的八十华诞.先生是水声信号处理和声呐设计领域享誉世界的专家,中国科学院院士,曾任中国科学院声学研究所所长,国家"863"计划海洋监测主题专家组组长,总装备部国家重大安全项目专家组组长。他长期从事信号处理理论研究和声呐设计、研制工作,结合我国浅海声传播的特点,创造性地应用信息论、数字信号处理、水声工程等理论,解决了一系列水声信号处理中的问题,为我国国防水声事业及国家信息化建设做出了突出的贡献。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn