T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:放射治疗(简称:放疗)作为肿瘤的主要治疗方式之一,在整个流程中对于治疗的技术精度和设备稳定性具有越来越高的要求。机器学习方法能够使放疗决策更加简化、个体化和精确化,提高了放疗计划设计和质量控制环节的自动化程度,推动了个体化的精准治疗。本文以放疗流程为线索,对机器学习方法尤其是深度学习法,在正常组织和肿瘤靶区的勾画、放疗计划设计、放疗实施、质量控制和放疗疗效预测等几个方面的应用、研究情况予以综述,并对发展前景做出展望。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn