T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:设计了一种应用于采样保持电路中高速高增益运算放大器。该运放采用全差分增益提高型共源共栅结构。在输入信号通路上加入适当的补偿电容,消除了零极点对对运放建立时间的影响,同时对主运放的次极点进行了优化,改进了相位裕度。采用0.35μmCMOS工艺仿真,结果表明,运放的开环直流增益达到106dB,单位带宽为831MHz(负载电容8pF),相位裕度为60.5°,压摆率为586V/μs,满足12位50MS/s流水线ADC中采样保持电路性能要求。
摘要:为提高应用于移动终端的视频解码器的解码速度,根据DSP-BF533的特点,给出一个新型的优化方案,把解码执行程序分成数据解码和准备、高级解码、DMA 3个软件模块,按照一定的规则并行执行以上3个模块,显著提高图像解码速度。
摘要:采用SANAN公司的0.25μm E-Mode pHEMT工艺,基于ADS仿真,设计了一款工作频率为2.0~4.2 GHz的两级级联的宽带LNA芯片。芯片采用电阻偏压的方式,实现了3.3 V单电源供电。同时,设计了一种改进型的RLC并联负反馈结构,实现了宽带匹配。仿真结果表明,该LNA在2.0~4.2 GHz频段内,最大增益为30.9 dB,增益平坦度为±0.6 dB左右,输入回波损耗小于-9 dB,输出回波损耗小于-12 dB;噪声系数为(1.2±0.14)dB;系统稳定性因子K在全频带内大于2.8;芯片面积为0.78 mm×2.2 mm。
摘要:基于2μm InGaP/GaAs HBT工艺,设计并实现了一种用于LTE终端的高效率、高线性功率放大器。采用模拟预失真和相位补偿器抑制幅度失真和相位失真,实现了高线性度;利用二次谐波终端电容改变电路工作模式,减少时域电压电流的重叠损耗功率,提高了功率附加效率。结果表明,在3.4 V电源电压、2.8 V偏置电压时,在工作频带815~915 MHz范围内,该功率放大器的增益大于29.5 dB,输入回波损耗小于-13.2 dB;在10 MHz LTE输入调制信号、28 dBm回退输出功率时,功率附加效率为39%~41%,第一相邻信道泄漏比ACLR;小于-38.1 dBc,第二相邻信道泄漏比ACLR_(1)小于-44.8 dBc。
摘要:基于AWSC 2μm的HBT工艺,设计了一种用于5G通信N77频段(3.3~4.2 GHz)的功率放大器。采用变压器匹配的方式,显著提高了功率放大器的增益、输出功率和功率附加效率,解决了放大电路级间匹配较难的问题。仿真和测试结果表明,在N77工作频段内,该功率放大器的增益为36~38 dBm,输出功率1 dB压缩点为37 dBm,输出功率1 dB压缩点处的功率附加效率为49.3%,输出功率28.5 dBm处的功率附加效率为16.5%、相邻频道泄漏比为-38.2 dBc。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn