T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:针对现有卷积模型为主的反欺骗说话人验证系统捕获全局特征依赖不理想的问题,提出一种利用全局-局部特征依赖的反欺骗说话人验证系统。首先,对于欺骗语音检测模块,设计两种滤波器组合方式对原始语音进行滤波,并通过对频率子带的掩蔽实现样本扩充;其次,提出多维全局注意力机制,通过对信道维度、频率维度和时间维度分别进行池化,获得每个维度的全局依赖关系,并将全局信息通过加权的方式与原始特征相融合;最后,在说话人验证部分引入统计金字塔池化时延神经网络(SPD-TDNN),在获取多尺度时频特征的同时计算特征的标准差,并加入全局信息。实验结果表明,与集成时频图卷积(AASIST)模型相比,在ASVspoof2019数据集上提出的欺骗语音检测系统将等错误率(EER)降低了65.4%;与单独的金字塔池化说话人验证系统相比,提出的反欺骗说话人验证系统将欺骗感知说话人验证等错误率降低了约97.8%。以上验证了所提两个模块借助全局特征依赖能实现更好的分类效果。
摘要:现有光学遥感图像超分重建方法主要是生成视觉上令人满意的图像,并未考虑后续目标检测任务的特殊性,不能有效地应用到目标检测中。基于此,提出了面向目标检测的双驱动自适应多尺度光学遥感图像超分重建方法,将超分重建网络和目标检测网络结合起来,进行联合优化。针对光学遥感图像的特点设计了自适应多尺度遥感图像超分重建网络,集成选择性内核网络和自适应特征门控单元来特征提取和融合,重建出初步遥感图像。通过提出的双驱动模块,将特征先验驱动损失和任务驱动损失传到超分重建网络中,提高目标检测的性能。在UCAS-AOD和NWPU VHR-10数据集上进行实验,并与5种主流方法进行比较,所提方法的峰值信噪比和平均准确率相较于FDSR方法分别提高了1.86 dB和3.73%。实验结果表明,所提方法和光学遥感图像目标检测结合可以取得更好的效果,综合性能更佳。
摘要:目的多人交互行为的识别在现实生活中有着广泛应用。现有的关于人类活动分析的研究主要集中在对单人简单行为的视频片段进行分类,而对于理解具有多人之间关系的复杂人类活动的问题还没有得到充分的解决。方法针对多人交互动作中两人肢体行为的特点,本文提出基于骨架的时空建模方法,将时空建模特征输入到广义图卷积中进行特征学习,通过谱图卷积的高阶快速切比雪夫多项式进行逼近。同时对骨架之间的交互信息进行设计,通过捕获这种额外的交互信息增加动作识别的准确性。为增强时域信息的提取,创新性地将切片循环神经网络(recurrent neural network,RNN)应用于视频动作识别,以捕获整个动作序列依赖性信息。结果本文在UT-Interaction数据集和SBU数据集上对本文算法进行评估,在UT-Interaction数据集中,与H-LSTCM(hierarchical long short-term concurrent memory)等算法进行了比较,相较于次好算法提高了0.7%,在SBU数据集中,相较于GCNConv(semi-supervised classification with graph convolutional networks)、RotClips+MTCNN(rotating cliips+multi-task convolutional neural netowrk)、SGC(simplifying graph convolutional)等算法分别提升了5.2%、1.03%、1.2%。同时也在SBU数据集中进行了融合实验,分别验证了不同连接与切片RNN的有效性。结论本文提出的融合时空图卷积的交互识别方法,对于交互类动作的识别具有较高的准确率,普遍适用于对象之间产生互动的行为识别。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn