T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:高铁车站内股道间电磁信号邻线干扰防护是列车安全运行控制的要求,两线间互阻抗是邻线干扰的重要参数。对高铁站内轨道电路邻线干扰较为严重的工程问题进行理论研究,定量分析站台基础设施结构钢筋差异带来的电磁环境影响;推导相邻轨道电路互阻抗表达式,并对影响互阻抗大小的因素进行仿真分析;在某高铁站对两轨道电路互阻抗进行现场测试。仿真分析结果和现场实测结果均表明:站台内钢筋的存在,使相邻股道间互阻抗增加,且互阻抗增加量随工作频率的提高而增大。
摘要:弓网离线电弧引起的电磁辐射,是列控系统主要的电磁骚扰源之一。为研究弓网离线时刻牵引电流相位对弓网离线电磁辐射特性的影响,在实验室中搭建弓网分离时刻电流相位可控的低压大电流弓网离线拉弧模拟试验平台,同步采集不同离线相位下的电弧电压、电弧电流及电磁辐射的时域波形数据,通过对电磁辐射时域信号进行快速傅里叶变换(FFT),分析离线相位对电磁辐射信号频域特性的影响规律。结果表明:弓网离线拉弧放电过程中,起弧和熄弧时刻的电磁辐射通常大于稳定燃弧时的电磁辐射;离线拉弧电磁辐射主要频段的中心频率约为4,7,15和25 MHz左右,且不同频段电磁辐射强度与弓网分离时刻的牵引电流相位相关,4和7 MHz骚扰信号峰值出现在270°相位发生离线时,15 MHz骚扰信号峰值出现在234°相位发生离线时,25 MHz骚扰信号峰值出现在306°相位发生离线时;离线时刻相位的随机性是导致弓网离线干扰故障随机性的重要原因之一。试验结果对于搭建测试平台进行故障复现、研究过分相区断路器的分合闸控制策略以降低电磁骚扰,具有一定的借鉴和启发。
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn