T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:The aim of this study is to define optimal tooth modifications, introduced by appropriately chosen head-cutter geometry and machine tool setting, to simultaneously minimize tooth contact pressure and angular displacement error of the driven gear (transmission error) of face-hobbed spiral bevel gears. As a result of these modifications, the gear pair becomes mismatched, and a point contact replaces the theoretical line contact. In the applied loaded tooth contact analysis it is assumed that the point contact under load is spreading over a surface along the whole or part of the ‘‘potential’’ contact line. A computer program was developed to implement the formulation provided above. By using this program the influence of tooth modifications introduced by the variation in machine tool settings and in head cutter data on load and pressure distributions, transmission errors, and fillet stresses is investigated and discussed. The correlation between the ease-off obtained by pinion tooth modifications and the corresponding tooth contact pressure distribution is investigated and the obtained results are presented.
摘要:Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels.
摘要:Passive micromixers are preferred over active mixers for many microfluidic applications due to their relative ease in integration into complex systems and operational *** also incur very low cost of ***,the degree of mixing is comparatively low in passive mixers than active mixers due to the absence of disturbance in the flow by external forces and the inherent laminar nature of microchannel *** designs of complex channel structures and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive *** the studies on mixing enhancement with simple planar geometries of passive mixers have been few and *** present work aims to investigate the possibility of mixing enhancement by employing simple planar type designs,such as T-mixer and T–T mixer with cylindrical elements placed in the mixing *** mixing performance has been evaluated in the Reynolds number range of 6 *** results have shown that T–T mixer with cylindrical elements performed significantly well and obtained very good mixing quality over basic T-mixer for the entire range of Reynolds number(6 to 700).The device has also shown better mixing as compared to basic T–T mixer and T-mixer with cylindrical elements.A larger pair of vortices formed in the stagnation area due to the presence of a cylindrical element in the *** elements downstream caused significant enhancement in mixing due to splitting and recombining *** size of the cylindrical element in the T–T mixer has been optimized to obtain better mixing performance of the *** improvement in mixing quality by T–T mixer with cylindrical elements has been obtained at the expense of small rise in pressure drop as compared to other passive designs considered in this ***,the current design of T–T mixer with cylindrical elements can act as an effective and simple passive mixing device for various mi
摘要:Most commercial and industrial facilities require very low temperatures for refrigeration and high temperatures for space heating and hot water purposes. Single stage heat pumps have not been able to meet these temperature demands and have been characterized by low capacities and coefficient of performance(COP). Cascade heat pump has been developed to overcome the weaknesses of single stage heat pumps. This study reviews recent works done by researchers on cascade heat pumps for refrigeration, heating and hot water generation. Selection of suitable refrigerants to meet the pressure and temperature demands of each stage of the cascade heat pump has been discussed. Optimization of design parameters such as intermediate temperature(low stage condensing and high stage evaporating temperatures), and temperature difference in the cascade heat exchanger for optimum performance of the cascade heat pump has been reviewed. It was found that optimising each design parameter of the cascade heat pump is necessary for maximum system performance and this may improve the exergetic efficiency, especially of cascade refrigeration systems, by about 30.88%. Cascade heat pumps have wider range of application especially for artificial snow production, in the supermarkets,for natural gas liquefaction, in drying clothes and food and as heat recovery system. The performance of cascade heat pumps can be improved by 19% when coupled with other renewable energy sources for various real time applications. Also, there is the need for much research on refrigerant charge amount of cascade heat pumps, refrigerant-refrigerant heat exchangers to be used as cascade heat exchanger, cascade heat pumps for simultaneous cooling, heating and hot water generation and on the use of variable speed compressors and their control strategies in matching system capacity especially at part load conditions.
摘要:Traditional two-dimensional(2D)cell cultures lack the extracellular matrix(ECM)-like structure or dynamic fluidic microenvironment for cells to maintain in vivo ***-dimensional(3D)tissue scaffolds,on the other hand,could provide the ECM-like microenvironment for cells to reformulate into tissue or organoids that are highly useful for in vitro drug *** this study,a high-throughput two-chamber 3D microscale tissue model platform is *** scaffolds are selectively foamed on a commercially available compact disk using *** of cell culture medium is achieved with centrifugal force-driven diffusion by disk *** studies were conducted on the fabrication process under various gas saturation and laser power *** cultures were performed with two types of human cell lines:M059K and *** is shown that the structure of microscale porous scaffolds can be controlled with laser foaming parameters and that coating with polydopamine these scaffolds are inducive for cell attachment and aggregation,forming a 3D *** many such two-chamber models fabricated on a single CD and perfusion driven by the centrifugal force from rotation,the proposed platform provides a simple solution to the high-cost and lengthy drug development process with a high-throughput and physiologically more relevant tissue model system.
摘要:Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are currently able to function evenbetter than natural dry adhesives on smooth surfaces under normal loading. However, the adhesion of these single level syntheticdry adhesives on rough surfaces is still not optimal because of the reduced contact surface area. In nature, contact area ismaximized by hierarchically structuring different scales of fibres capable of conforming surface roughness. In this paper, weadapt the nature’s solution arid propose a novel dual-level hierarchical adhesive design using Polydimethylsiloxane (PDMS),which is tested under peel loading at different orientations. A negative macro-scale mold is manufactured by using a laser cutterto define holes in a Poly(methyl methacrylate) (PMMA) plate. After casting PDMS macro-scale fibres by using the obtainedPMMA mold, a previously prepared micro-fibre adhesive is bonded to the macro-scale fibre substrate. Once the bondingpolymer is cured, the micro-fibre adhesive is cut to form macro scale mushroom caps. Each macro-fibre of the resulting hierarchicaladhesive is able to conform to loads applied in different directions. The dual-level structure enhances the peel strengthon smooth surfaces compared to a single-level dry adhesive, but also weakens the shear strength of the adhesive for a given areain contact. The adhesive appears to be very performance sensitive to the specific size of the fibre tips, and experiments indicatethat designing hierarchical structures is not as simple as placing multiple scales of fibres on top of one another, but can requiresignificant design optimization to enhance the contact mechanics and adhesion strength.
摘要:A rapid wax injection tool of a gearbox shift fork was designed, simulated, and manufactured using rapid prototyping and rapid tooling technology to save time and cost of producing wax models used for the investment casting process. CAE simulation softwares, in particular, MoldFlow, are used to get wax injection moulding parameters such as filling parameters, temperature profiles, freeze time, speed, and pressure. The results of this research were compared with conventional wax model production methods. The criteria of such comparison were based upon parameters such as time, cost, and other related characteristics, which resulted in saving of 50% in time and 60% in cost. In this research, design, assembly, and wax injection operation of the wax tool took 10 days. Considering the fact that wax melting temperature is as low as 70℃ and injection pressure of 0.5 MPa, the tool suffers no damage due to the thermal and pressure stresses, leading to the mass production of wax models.
摘要:In the International Thermonuclear Experimental Reactor(ITER) project,the feeders are one of the most important and critical *** convey the power supply and the coolant for the central solenoid(CS) magnet,6 sets of CS feeders are employed,which consist mainly of an in-cryostat feeder(ICF),a cryostat feed-through(CFT),an S-bend box(SBB),and a coil terminal box(CTB).To compensate the displacements of the internal components of the CS feeders during operation,sliding cold mass supports consisting of a sled plate,a cylindrical support,a thermal shield,and an external ring are *** check the strength of the developed cold mass supports of the CS3U feeder,electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric ***, the thermal-structural coupling analysis is performed based on the obtained results,except for the stress concentration,and the *** intensity is lower than the allowable stress of the selected *** is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working *** these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.
摘要:With their unique optical properties associated with the excitation of surface plasmons, metal nanoparticles (NPs) have been used in optical sensors and devices. The organization of these NPs into arrays can induce coupling effects to engineer new optical responses. In particular, lattice plasmon resonances (LPRs), which arise from coherent interactions and coupling among NPs in periodic arrays, have shown great promise for realizing narrow linewidths, angle-dependent dispersions, and high wavelength tunability of optical spectra. By engineering the materials, shapes, sizes, and spatial arrangements of NPs within arrays, one can tune the LPR-based spectral responses and electromagnetic field distributions to deliver a multitude of improvements, including a high figure-of-merit, superior light-matter interaction, and multiband operation. In this review, we discuss recent progress in designing and applying new metal nanostructures for LPR-based applications. We conclude this review with our perspective on the future opportunities and challenges of LPR-based devices.
摘要:Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of ***,it is still challenging to ensure the integrity,physiological function and regeneration ability of stratified OC scaffolds in clinical *** OC scaffolds are attractive to overcome the above problems because of their similar biological and mechanical properties with native OC *** a consequence,the researches on biomimetic design to achieve the tissue function of each layer,and additive manufacture(AM)to accomplish composition switch and ultrastructure of personalized OC scaffolds have made a remarkable *** this review,the design methods of biomaterial and structure as well as computer-aided design,and performance prediction of biopolymer-based OC scaffolds are presented;then,the characteristics and limitations of AM technologies and the integrated manufacture schemes in OC tissue engineering are summarized;finally,the novel biomaterials and techniques and the inevitable trends of multifunctional bio-manufacturing system are discussed for further optimizing production of tissue engineering OC scaffolds.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn