T=题名(书名、题名),A=作者(责任者),K=主题词,P=出版物名称,PU=出版社名称,O=机构(作者单位、学位授予单位、专利申请人),L=中图分类号,C=学科分类号,U=全部字段,Y=年(出版发行年、学位年度、标准发布年)
AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
范例一:(K=图书馆学 OR K=情报学) AND A=范并思 AND Y=1982-2016
范例二:P=计算机应用与软件 AND (U=C++ OR U=Basic) NOT K=Visual AND Y=2011-2016
摘要:Due to the importance and role of systems engineering in space mission developments, optimization of Omid's systems engineering as a milestone to its current and future generations is focused. In this regard systems engineering management organization as the basis of optimization work flow in the conceptual design phase is proposed for improvement. To improve the systems engineering management, an agile enhanced organization chart is developed that defines various system duties. This is a type of concurrent engineering approach that promotes direct communication and data interchange between the team members. Due to the importance of decision making in the conceptual design phase, two design matrices are constructed that portray merits of various design options in terms of improved satellite life as well as specific choices of remote sensing capability for the Omid second generation(Omid-2). Conceptual design optimization is explored considering several structural objectives as well as optimal solar energy absorption utilizing a multiple criteria decision making approach. The Eigenvector method is utilized to formulate the objective function via expert judgment. This approach is robust with respect to designer probable miss-judgment. The optimized version of Omid-2 turned out to be a passive Z-axis spin stabilized satellite made of hexagonal honeycomb configuration with carbon-epoxy side panels and Aluminum bottom plate.
摘要:Guide vane cascade of a low speed number Francis turbine is developed for the experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. Standard analytical methods are used to design the reference turbine. Periodic walls of flow channel between guide vanes are identified as the starting profile for the boundary of the cascade. Two alternative designs with three guide vanes and two guide vanes, without runner, are studied. A new approach, for the hydraulic design and optimization of the cascade test setup layout, is proposed and investigated in details. CFD based optimization methods are used to define the final layout of the test setup. The optimum design is developed as a test setup and experimental validation is done with PIV methods. The optimized design of cascade with one guide vane between two flow channels is found to produce similar flow conditions to that in the runner inlet of a low speed number Francis turbine.
摘要:A multi-bit antifuse-type one-time programmable (OTP) memory is designed, which has a smaller area and a shorter programming time compared with the conventional single-bit antifuse-type OTP memory. While the conventional antifuse-type OTP memory can store a bit per cell, a proposed OTP memory can store two consecutive bits per cell through a data compression technique. The 1 kbit OTP memory designed with Magnachip 0.18 μm CMOS (complementary metal-oxide semiconductor) process is 34% smaller than the conventional single-bit antifuse-type OTP memory since the sizes of cell array and row decoder are reduced. And the programming time of the proposed OTP memory is nearly 50% smaller than that of the conventional counterpart since two consecutive bytes can be compressed and programmed into eight OTP cells at once. The layout area is 214 μm× 327 μ,, and the read current is simulated to be 30.4 μA.
摘要:A materials design tool for developing Pb-free soldering alloys in electronic package was developed based on comprehensive experimental data of phase equilibria and thermodynamic properties data accumulated with the CALPHAD (calculation of phase diagrams) method and contains 10 elements,namely,Ag,Au,Bi,Cu,In,Ni,Sb,Sn,Zn and *** can handle the calculation of phase diagrams in all combinations of these elements and all composition *** addition,based on this tool,the liquidus,solidus,phase fractions and constitutions,equilibrium and non-equilibrium solidification behavior,surface tension and viscosity of liquid,diffusion reactions and microstructural evolution,*** be *** examples of the calculation and application of this tool are *** design tool is expected to be a powerful tool for the development of Pb-free solders,as well as for promoting the understanding of the interfacial phenomena between Cu substrate and Pb-free solders in electronic packaging technology.
摘要:Interferometric optical testing using computer-generated hologram (CGH) has provided an approach to highly accurate measurement of aspheric surfaces. While designing the CGH null correctors, we should make them with as small aperture and low spatial frequency as possible, and with no zero slope of phase except at center, for the sake of insuring low risk of substrate figure error and feasibility of fabrication. On the basis of classic optics, a set of equations for calculating the phase function of CGH are obtained. These equations lead us to find the dependence of the aperture and spatial frequency on the axial distance from the tested aspheric surface for the CGH. We also simulate the optical path difference error of the CGH relative to the accuracy of controlling laser spot during fabrication. Meanwhile, we discuss the constraints used to avoid zero slope of phase except at center and give a design result of the CGH for the tested aspheric surface. The results ensure the feasibility of designing a useful CGH to test aspheric surface fundamentally.
摘要:The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow methods did not take into account the influence of the interaction caused by air cooling. The aerodynamic design and cooling design of cooled turbines were carried out separately, and the iterations between the aerodynamic design and cooling design led to a long design period and raised the design cost. To shorten the design period and decrease the design cost, this paper proposes a concise aero-thermal coupled through-flow method for the design of cooled turbines, taking into account the influence of the complicated interaction between the flow field and heat transfer in cooled turbines. The governing equations, such as energy equation and continuity equation in classical through-flow method are re-derived theoretically by considering the historical influence of cooling with the same method that deals with viscous losses in this paper. A cooling model is developed in this method. The cooled blade is split into a number of heat transfer elements, and the heat transfer is studied element by element along both the span and the chord in detail. This paper applies the method in the design of a two-stage axial turbine, of which the first stator is cooled with convective cooling. With the prescribed blade temperature limitation and the knowledge of the flow variables of the mainstream at the turbine inlet, such as the total pressure, total temperature and mass flow rate, the convergence of the calculation is then obtained and the properties of the flow field, velocity triangles and coolant requirement are well predicted. The calculated results prove that the aero-thermal coupled through-flow method is a reliable tool for flow analysis and coolant requirement prediction in the design of cooled turbines.
摘要:This paper presents a new joint optimization method for the design of sharp linear-phase finite-impulse response (FIR) digital filters which are synthesized by using basic and multistage frequency-response-masking (FRM) techniques. The method is based on a batch back-propagation neural network algorithm with a variable learning rate mode. We propose the following two-step optimization technique in order to reduce the complexity. At the first step, an initial FRM filter is designed by alternately optimizing the subfilters. At the second step, this solution is then used as a start-up solution to further optimization. The further optimization problem is highly nonlinear with respect to the coefficients of all the subfilters. Therefore, it is decomposed into several linear neural network optimization problems. Some examples from the literature are given, and the results show that the proposed algorithm can design better FRM filters than several existing methods.
摘要:The fixation and conversion of CO_(2)frommedium-and high-temperature industrial exhaust gases arescientifically important and challenging tasks owing to theharsh conditions ***_(2)O_(3),a stable p-block compound,is surprisingly active in the thermal conversion of hot CO_(2)waste gas,but its underlying mechanism remains *** study,we investigated CO_(2)adsorption and activationacross 11 different Ga_(2)O_(3)-terminated faces using densityfunctional *** transfer and chemical bond analysesrevealed the occurrence of two distinct activation mechanismsinvolving synchronous electron gain and loss,driven by astrong synergetic effect between Ga cations and O anions onthe substrate *** Ga-O synergy enhances the CO_(2)activation efficiency compared with single active sites,with CO_(2)^(δ+) cation more readily capturing H atom than CO_(2)^(δ–).Tothe best of our knowledge,such a dual activation mechanismhas not been reported before,particularly for p-block *** findings provide new insights into the direct catalyticconversion of CO_(2)emissions and offer strategies for the rational design of industrial-grade catalysts for medium-andhigh-temperature CO_(2)tail gas conversion.
摘要:System analysts often use software fault prediction models to identify fault-prone modules during the design phase of the software development life cycle. The models help predict faulty modules based on the software metrics that are input to the models. In this study, we consider 20 types of metrics to develop a model using an extreme learning machine associated with various kernel methods. We evaluate the effectiveness of the mode using a proposed framework based on the cost and efficiency in the testing phases. The evaluation process is carried out by considering case studies for 30 object-oriented software systems. Experimental results demonstrate that the application of a fault prediction model is suitable for projects with the percentage of faulty classes below a certain threshold, which depends on the efficiency of fault identification(low: 47.28%; median: 39.24%; high: 25.72%). We consider nine feature selection techniques to remove the irrelevant metrics and to select the best set of source code metrics for fault prediction.
摘要:The mechanical failure of solid oxide fuel cell(SOFC) components may cause cracks with consequences such as gas leakage,structure instability and reduction of cell lifetime.A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this *** main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs,which would be a new criterion for interconnect *** model incorporates the momentum,mass,heat,ion and electron transport,as well as steady-state *** from methane steam reforming and water-gas shift reaction were considered in our *** results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties.A wider interconnect of the anode side lowers the stress *** simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow,corresponding to the temperature *** study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.
地址:宁波市钱湖南路8号浙江万里学院(315100)
Tel:0574-88222222
招生:0574-88222065 88222066
Email:yzb@zwu.edu.cn