限定检索结果

检索条件"机构=Ingram School of Engineering"
3 条 记 录,以下是1-10 订阅
视图:
排序:
Matrix Operations Design Tool for FPGA and VLSI Systems
收藏 引用
《Circuits and Systems》2016年 第2期7卷 43-50页
作者:Semih Aslan Jafar SaniieIngram School of Engineering Electrical Engineering Texas State University San Marcos TX USA Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago IL USA 
Embedded systems used in real-time applications require low power, less area and high computation speed. For digital signal processing, image processing and communication applications, data are often received at a con...
来源:详细信息评论
Prediction of the mechanical performance of polyethylene fiber-based engineered cementitious composite(PE-ECC)
收藏 引用
《Low-carbon Materials and Green Construction》2024年 第1期2卷 354-378页
作者:Shameem Hossain Md Nasir Uddin Kangtai Yan Md Minaz Hossain Md Sabbir Hossen Golder Md Ahatasamul HoqueDepartment of Bridge EngineeringCollege of Civil EngineeringTongji UniversityShanghaiChina Department of Disaster Mitigation for StructuresCollege of Civil EngineeringTongji UniversityShanghaiChina Ingram School of EngineeringTexas State UniversitySan MarcosTX 78666USA 
In recent years,extensive research has focused on applying machine learning(ML)techniques to predict the properties of engineered cementitious composites(ECCs).ECCs exhibit crucial characteristics such as compressive ...
来源:详细信息评论
Revolutionizing engineered cementitious composite materials(ECC):the impact of XGBoost-SHAP analysis on polyvinyl alcohol(PVA)based ECC predictions
收藏 引用
《Low-carbon Materials and Green Construction》2024年 第1期2卷 311-333页
作者:Md Nasir Uddin Al-Amin Shameem HossainIngram School of EngineeringTexas State UniversitySan MarcosTX 78666USA Department of Bridge EngineeringCollege of Civil EngineeringTongji UniversityShanghaiChina Department of Disaster Mitigation for StructuresCollage of Civil EngineeringTongji UniversitySiping Road 1239Shanghai 200092China 
This study integrates previous experimental data and employs machine learning(ML)methods,including Random Forest(RF),Support Vector Machine(SVM),Artificial Neural Network(ANN),and eXtreme Gradient Boosting(XGBoost),to...
来源:详细信息评论
聚类工具 回到顶部